全国服务热线 18602118379
单位新闻

西门子交换机一级代理

发布时间: 2022-10-14 22:52 更新时间: 2023-09-19 08:00

间气相介电常数的分布;被测介质表面状态及其介电常数。雷达波在界面的反射率与两介质的介电性差别密切相关,有时,传输介质的导电导磁性引发的微波传播速度变化不容忽视。大部分物质介电常数大于1.4,空气或真空的介电常数为1.0,电磁波由真空或空气射向介电常数为εr时,表面反射度R,介电常数在1.0附近的介质反射率(即反射度)低,此时,非接触式雷达往往接收不到足够强度的界面反射回波。对于介电常数特别小的液化气体,**使用非接触式雷达并安装在稳液井上,好于旁通管安装,后者存在入口管线干扰,如有可能考虑在旁通管内安装稳液井(管套管);杆式探头导波雷达安装在直径不*过150mm的稳液井或旁通管里,会获得等同于同轴探头导波雷达的较佳效果。
非接触雷达采用间接测量技术,如罐底跟踪模式,利用物位变化时罐底回波行程的改变甚至可以测量介电常数低至1.05的物料,类似的技术也用在导波雷达上。
②物料气相阻碍或吸收雷达波气相中存在使雷达波衰减的物质,如含高介电性的粉尘粉末(石墨,铁合金等),测量距离和效果会受影响。
某些物质因自身或与空气中其他成分发生化学反应而电离成离子,从而使其气相具有微波吸收性,其气液两相介电常数的差别也因此减小,这样会削弱界面回波。如液的介电常数常温下(25℃)为14.9,不属于非导电介质,仍应采用稳液井上的低频非接触雷达或导波雷达物位计。固体物料堆积往往有一定的安息角,此时应考虑导波雷达。特别是粉状物料,表面疏松以及介电常数很低的塑料粒子,微波反射相当困难,且气相中严重的粉尘会在一定程度上反射回波。
③安装环境复杂容器内设备的反射会带来较大干扰,有以下几种情况:内障碍物较多,比如在非接触雷达的波束角内有液位开关或温度传感器;内有相对于雷达天线即测量参考点对称的装置,如加热盘管、隔板等;球罐和卧罐、水平圆柱形和球形储罐的罐壁及罐底会带来较大的反射干扰,可能存在因容器形状而导致多重回波所产生的干扰影响。特别是容器内障碍物太多或导波雷达的探头与障碍物太近时,应使用抗干扰能力强的同轴探头。
浮*罐一般采用稳液井,**测量时还要考虑介质气化对微波传输速度的影响。
④液面湍动及液面有泡沫液面湍动有可能引起多径反射,要避免安装在有很强涡流的地方,如搅拌或很强的化学反应处。表面的泡沫可能会吸收或反射雷达波,视泡沫的导电性而定:对于干泡沫,微波信号可以穿过,直接到达液体表面;中性泡沫可能吸收或散射微波,难以预判;湿泡沫表面会反射微波信号;当介质表面为稠而厚的泡沫时,测量误差较大或无法测量。相比而言,低频雷达穿透泡沫的能力比高频强。
采用四线制、大尺寸特殊设计天线、高频、连续调频波的非接触雷达物位计能发射接收到*强的信号,并采用功能强大的微处理器进行复杂的信号处理,可以在很大程度上应对上述四种工况,应用非接触雷达物位测量方法同样可测介电常数低至1.2的物料的液面,发挥其优势;另外,**的干扰回波锁定及干扰抑制技术也可以很大程度上克服干扰。但是,相比接触式测量方式,其价格昂贵。
48

⑤界位测量导波雷达的低频波穿透性强,无发散角,回波*强,使其不仅适合测量气液(气固)两相的界面,还可以测量介电常数相差大的上层非导电与下层导电液体的界位。典型应用是油水界位测量,但需注意介电常数对电磁波速度的影响,上层物料的介电常数必须**输入雷达,液界位已知时则可反算介电常数。
1.2.2 不宜接触介质的情况使用介质接触测量方法就意味着放弃了非介质接触式测量的优点,以下情况应使用非接触测量方法:
①高黏度、严重沉积和结晶的介质污染物或沉积物容易积聚在探头或稳液井内壁上。薄的、均匀的积聚物对测量有轻微的影响;厚的积聚物会造成信号衰减并减小测量范围;厚重、不均匀的粘附物形成结疤处有可能被错误地评定为界位,导致不正确的测量。相对来说,同轴探头与双探头抗干扰的能力较强,也较容易受挂料的影响。该种情况下,应采用非接触式测量方法。注意此时一般有加热盘管、搅拌叶片、搅拌产生的泡沫漩涡、湍动液面、物料挥发、蒸汽等不利测量的因素存在,这些都是非接触雷达选型安装时要着重考虑的。
②探头容易损伤的场合容器内安装搅拌器,有时搅拌器会对探头产生较大机械负载的场合,横向切应力可能会折断探头,需要机械支架或者安装应用稳液井和旁通,确认是否采用非接触式测量仪表*合适;另外,具有强研磨作用的固体块料,如铁氧体,会磨损导波雷达的探头,降低探头的张力负载,也容易损伤探头。
1.3 非接触雷达的高频与低频频率影响决定不了精度,精度受雷达信号发射接收方式及回波处理算法的影响。
1.3.1 高频的优势高频雷达物位计具有能量集中的特点,应用小尺寸的天线就能获得小波束角和大的天线增益。天线有“孔径”和汇聚效应,以普通锥形天线为例,天线尺寸(圆锥天线直径D)和频率也决定了散射(波束)角的大小,波长λ越短,波束角越小,增益越大,能量*强*集中,量程*大。如6.3G雷达天线尺寸为150、200、250mm时,散射角约为23°、19°、15°;26G雷达天线尺寸为40、50、80、100mm时,散射角约为23°、18°、10°、8°。故高频雷达物位计适合形状狭高的储罐,能避开复杂结构罐中的干扰。
测量散料时,回波主要来自粗糙料面的漫反射,漫反射的强度与物料大小成正比,与波长成反比,当反射面的线度与波长相当或*大时,才能发生反射。显然,工作频率越高,其波长越小,对于颗粒较小的物料,*易于发生漫反射,而大部分散料的直径远小于50mm,故高频雷达是散装料物位测量的较佳选择,较小的波长可以较大程度保发射出去的雷达波能够在粗糙的固体表面反射回雷达探头。

越小,精度都可以达到±1mm以内,都有高速跟踪液位的表现。另外,还有将两者结合起来的调频脉冲波型雷达,其脉冲波的载波是连续调频的。
1、雷达物位计设计选型1.1 雷达物位计综述根据电磁波传播方式的不同雷达物位计可分为介质接触式与非接触式。前者电磁波在导波材料限定的空间内传播,后者在自由空间里传播。安装在自由空间里的非接触雷达,其微波信号以天线中心为轴线发射,并沿着此轴线在1个限定的锥形束角内(即半功率波束宽度,又称波束角、辐射角、散射角,有时波束角外的能量也不容忽视)推进传播,传播沿程信号以“反比于距离二次方”的速度迅速衰减。因此,测量的关键是接收到足够能量的反射回波,并识别出有效回波。接收的回波能量Pk可用简化的雷达方程表示如下:
Pk=(Pτ×C×Gi×Gt×Gr)/R2-----------①;公式①中:Pτ为天线辐射功率;C为经验系数;Gi为由目标表面介电特性及面积决定的反射增益;Gt为天线发射效率;Gr为天线接收效率;R为天线与目标间的距离。上述参数是设计、应用雷达物位计必须考虑的重要因数。表1列出了反射回波能量的衰减与雷达物位计4参数的关系。
表1  反射回波能量的衰减与4参数的关系
测量条件                                       反射能量(较小:较大)
测量距离1-30m                             1:1000
天线尺寸0.1-0.5m                          1:600
界面状态波动-平静                         1:100
介电常数1.7-80.0                           1:36
一般来说,电磁波在自由空间传播的非接触雷达物位计所接收到的返回信号能量远小于它所发出能量的0.1%。采用波导体可以约束电磁波的传播空间,减少散射,大幅提高反射回波的质量,使得返回信号中的干扰性杂散信号*小,简化回波的分辨处理,从而发射功率也可以*低,故导波雷达一般都采用脉冲式工作原理。
1.2 介质接触与非接触的使用方式
接触与非接触的分类依据是雷达波传播方式的不同,介质接触即为导波,如果有必要且能够使用介质接触式测量方法,接触式为可以选择。波导体可以是仪表自带的探杆,也可以是现场制作的金属管。介质接触应用方式包括导波雷达(guided wavedradar),稳液井(stilling well)和旁通管(bypass pipeor external chamber or side vessel)里安装的非接触雷达(non-contacting radar or through air radar orfree-radiating radar)或导波雷达;导波雷达探头形式有同轴、刚性杆、柔性缆,导波雷达的同轴式探头从本质上来说是小口径稳液井中心加了1根刚性探杆。与稳液井或旁通管里安装非接触雷达相比较,导波雷达物位计是一种简单的解决方案,两者目标一致。

联系方式

  • 地址:上海松江 上海市松江区广富林路4855弄88号3楼
  • 电话:18602118379
  • 经理:杜丕琳
  • 手机:18602118379
  • 微信:18602118379
  • QQ:965801538
  • Email:965801538@qq.com